

Country case study: lessons from the Netherlands

Jarl Kind, Sr. Economist, Deltares

ECONADAPT Policy Workshop 27-28th September 2016, Brussels

Contents

- 1. The Dutch Delta Program
- 2. Economic analysis: three examples
 - CBA for New Flood Protection Standards
 - CEA Rhine-Meuse Estuary
 - CBA Fresh Water

The Dutch Delta Program

The National Delta Program

Long term (2050 / 2100)

- Flood protection
- Fresh water supply
- Spatial adaptation

Well embedded

- Delta Law
- Delta Fund (€ 1 billion p.a.)
- Delta Commissioner
- Delta Program (annual)
- Delta Decisions

National Delta Scenario's

Adaptation Tipping Points

Figure 2.8 Adaptation tipping points for the Rhine-Meuse estuary

Note: Red bullets indicate endpoints of a strategy, blue arrows indicate the strategy can cope with higher sea levels. The climate scenarios used in the Netherlands are marked with dotted lines.

Source: Jeuken et al., 2010.

Adaptation Pathways

Adaptation Pathways Map Action A Action B Current ____ situation Action C Action D Changing conditions 10 70 80 90 100 Time low-end scenario 70 80 90 100 10 Time high-end scenario Years Transfer station to new policy action

Adaptation Tipping Point of a policy action (Terminal)

Costs and benefits of pathways

Pathways that are not necessary in low-end scenario

Haasnoot et al. (2012). Clim. Change.; Haasnoot et al. (2013) Glob. Env. Change. 10.1016/j.gloenvcha.2012.12.006

Policy action effective

Decision node

CBA for Flood Protection Standards

Flood risk in the Netherlands

55% of the Netherlands is flood prone:

- 26% below sea level
- 29% above sea level

Flood protection: legal standards for dike ring areas

Legal standards

Coastal areas:

1/4000 – 1/10.000 per year

River:

1/1250 - 1/2000 per year

Flood protection: legal standards for dike ring areas

History of legal standards:

1953: Floods in Southwestern part of the NL

1960: (First) Delta Committee: protection standards for coastal areas

1977, 1993, 1995: protection standards for other areas proposed by other Committees

1996: Flood Defenses Act: protection standards enforced by law

Hence, existing legal protection standards:

- 1. have no common basis
- 2. are not up to date

Cost-benefit analysis, from static to dynamic

Static CBA:

- How much to invest?
- Minimize total of investments and expected damages

Dynamic CBA:

- How much, when and when again to invest?
- Minimize total of investments and expected damages

□ www	v.dutchwater	sector.cor	n/news/ne	ews/2	013/0	4/dutch	n-flood-	-expert-tea	m-wins-201	3-edelman	-award-	with-meth	od-to-calcul	ate-the-ec☆ (
Deltares	inloggen	i Gitaar	Muziek		Anna	ii Film	i radi	io 🗀 lezen	Vakantie	i school	i weer	overig	vacatures	ii bittorent
	Dutch V	Vater S	ector		News	s Pro	ojects	Directory	Features	Educatio	n Fo	cus Areas	Netherlands	About
	Hama	News	Dutch floor	dayna	rt to o m	wine 204	12 Edolm	on Award wit	h method to ca	loulate the e	onomio o	ntimal dika h	oighto	

Dutch flood expert team wins 2013 Edelman Award with method to calculate the economic optimal dike heights

April 9th, 2013 by nwp

A team of Dutch organisations specialized on flood control, headed by the Dutch Delta Program Commissioner, won the 2013 Franz Edelman Award for Achievement in Operations Research and the Management Sciences in San Antonio on April 8.

The Dutch organisations Delta Commissioner of Holland, Ministry of Infrastructure and the Environment, CPB Netherlands Bureau for Economic Policy Analysis, Delft University of technology, Tilburg University, research institute Deltares, consultancy

Search for

Search

Recent Posts

- Dutch flood expert team wins 2013 Edelman Award with method to calculate the economic optimal dike heights
- Official opening boulevard Scheveningen adds new icon to modern coastal landscaping
- IRC WASH-conference: first baseline of all Ethiopian water and sanitation facilities
- Imtech wins £75m
 Thames Water project for digestion of waste water

Categories

- 2012-IWA Busar
- 2012-Stockholm
- 2012-WWF Mar.
- 2013-World wate
- Features
- News

Tags

agriculture Aquatect Arcadis Australia Bangladesh Boskal China climate addicoastline Colombia Deltares DHV dredging drinkir flood protectio fresh water supply Fugro Grinarbours HKV Consindia Indonesia Italy Netherlar

Flood damage

- > 700 inundation scenario's
- For each scenario assessment of economic damages and number of casualties

Results

Results

Results

CBA Conclusions

- Higher standards are needed esp. along Rhine and Meuse
- → Flood risk reduction 67%, at a cost of € 3.7 billion.
- Earlier advice of 2nd Delta Commission, 2008: tenfold increase in standards everywhere
- → Flood risk reduction 90%, at a cost € 11.5 billion.
- Hence, CBA leads to savings in investment cost of € 7.8 billion.
- Extensive support for CBA: most of the updated flood protection standards (approved in Parliament in 2016) are in line with CBA outcome.

Lessons learned

New flood protection standards

- Sensitive issue, equity and efficiency considerations
- Long process (>10 years between start CBA and political decision in Parliament)
- Dependent on political support and openness
- CBA by consortium, led by Deltares, involving consultants and universities (→ credibility)
- International scientific recognition through Franz Edelman Award 2013
- Uncertainty range in optimal standards considerable → new classes of 1/1000; 1/3000; 1/10000 etc. per year.

CEA for Flood Protection Strategies RhineMeuse Estuary

Context

- Sea level rise, increased river discharges, socio-economic development
- Objective: reach and maintain (updated) flood protection standards
- Default measure: improve dikes
- Other measures:
 - Storm surge barrier (improve / replace)
 - Water storage
 - Change discharge distribution
 - (Room for the River)
- Q: What is an optimal strategy? → Cost-effectiveness analysis

Location of Measures

Purpose of the Planning Kit DPRD

- What are economically efficient measures?
- When should those be implemented?
- What combinations are possible?
- What are the remaining cost for dike increases?
- Consistent calculation framework, database

Hydraulic boundary conditions and dike design

Hydraulic boundary conditions and dike design

Adaptation pathways

5 measures4 choices:

- Do not implement
- Implement in short term
- Implement in medium term
- Implement in long term
- → 1024 combinations

2 x 16 chosen for Steam and Rest scenario

Costs for the different pathways

Table 2: Summary of strategies and present values of costs and expected damages Steam scenario

Strategy	Measu	res of the	strategy w	ith assum	ed year	Costs, in Million Euro Present Value, 2013 prices					
No.		of i	mplementa	ation							
	Grev	RftR1	RftR2	RftR3	Chan	Cost of	Cost of	Cost of	Total		
						Dikes	Water Level	Expected	Cost		
							Reducing	Damages			
							Measures				
S1						1771	58	1763	3592		
S2	2030					1730	184	1709	3623		
S3	2050					1732	101	1752	3585		
S4	2070					1767	73	1752	3591		
S5		2030				1737	314	1749	3800		
S6		2050				1742	146	1767	3655		
S7		2070				1771	88	1762	3620		
S8		2030	2030			1710	552	1740	4003		
S9		2030	2050			1726	396	1750	3873		
S10		2030	2070			1737	342	1748	3826		
S11		2030		2030		1686	334	1749	3768		
S12		2030		2050		1723	321	1750	3794		
S13		2030		2070		1736	317	1747	3800		
S14					2030	1734	125	1742	3601		
S15					2050	1740	81	1765	3586		
S16					2070	1771	66	1759	3596		

Costs for the different pathways

Table 2: Summary of strategies and present values of costs and expected damages Steam scenario

Strategy No.	Measu		strategy w mplementa		ed year	Costs, in Million Euro Present Value, 2013 prices					
110.	Grev	RftR1	RftR2	RftR3	Chan	Cost of	Cost of	Cost of	Total		
						Dikes	Water Level Reducing Measures	Expected Damages	Cost		
S1						1771	58	1763	3592		
S2	2030					1730	184	1709	3623		
S3	2050					1732	101	1752	3585 秦		
S4	2070					1767	73	1752	3591		
S5		2030				1737	314	1749	3800		
S6		2050				1742	146	1767	3655		
S7		2070				1771	88	1762	3620		
S8		2030	2030			1710	552	1740	4003		
S9		2030	2050			1726	396	1750	3873		
S10		2030	2070			1737	342	1748	3826		
S11		2030		2030		1686	334	1749	3768		
S12		2030		2050		1723	321	1750	3794		
S13		2030		2070		1736	317	1747	3800		
S14					2030	1734	125	1742	3601		
S15					2050	1740	81	1765	3586		
S16					2070	1771	66	1759	3596		

Lessons learned

- A tool is needed to collect information and provide consistent estimates of costs and benefits
- It is difficult to find (near optimal) adaptation strategies
- It is difficult to include uncertainty (climate change)
- The information was sufficient to discard certain measures

Delta Program Fresh Water

Delta Program: Fresh water

Aim Delta Program Fresh Water: Provide sufficient fresh water

Two economic analyses were conducted within the Program to provide information on the cost and benefits of

proposed national fresh water

measures.

These analyses didn't provide sufficient information to take decisions.

Experienced difficulties

- Lack of quantified impacts (both physical and welfare) due to high complexity:
 - Multiple sectors are affected
 - Return time is high: almost every year a sector is affected by drought. Many model runs are needed
 - Sectors adapt autonomously
- Communication problems between economists and hydrologists

Next steps

2021: Update Delta Decision

- New measures and strategies
- Agreed service level ('standards')

To support these decisions a method and tool is now developed by Deltares to provide insight into the economic risk of water shortages.

